
18 The Delphi Magazine Issue 55

Under Construction:
Internet Security
by Bob Swart

Delphi contains numerous tech-
niques and features to sup-

port internet solutions and web
applications, especially when it
comes to publishing information
from databases. One aspect of
these techniques is seldom men-
tioned, and that’s internet secu-
rity: safeguarding your data. And
your customer’s data.

For example, have you ever
ordered a CD from CD-Universe
(www.cduniverse.com) and paid
for it by credit card? In that case, I
urge you to call your credit card
company to block your card and
get a new one (with a new number).
About a month ago, hackers broke
into their database and published
15,000 credit card numbers on the
web, including the owners’ names,
addresses, etc. This page was
removed within a day, but
meanwhile anyone could have
made a copy...

My credit card company already
knew about the problem, but they
did not block my credit card or
send me a new one until I specifi-
cally asked for it. So you better
check your accounts. Even though
you’ll get your money back in the
end, it may take a while.

Security Levels
Security for internet applications
can be defined in a number of dif-
ferent levels, each built upon a
lower level. At the lowest level we
have the operating system (I’m
only talking about Windows NT
here, and I assume all the Service
Patches have been applied), next
the web server itself (Internet
Information Server in my case) and
on top of that the web server appli-
cation (CGI or ISAPI).

Apart from those three layers of
application, we must not forget
that many web server applications
also deploy a database with
catalogue, customer or orders

information, which could be on the
same machine (the web server), or
on another machine (a database
server). If you put it on another
machine, you can place a firewall
between the web server (which is
connected to the internet) and the
database server. This makes it
much harder for hackers to get
access to your database.

Firewall
A firewall can be seen as the
intersection between the private
and public networks. The web
server itself can host the firewall,
making sure people can access the
website itself but nothing more.
Also, if you have more than one
machine on your private network,
you can even use more than one
firewall (one on each machine),
keeping your web server on one
machine and a database server on
another machine (it could even be
a different operating system, such
as Linux, which many believe is
more secure than Windows NT).

Apart from being used on web
servers, firewalls are also perfect
for protecting client machines that
are continuously connected to the
internet (through a leased line or
DSL connection, for example). And
if you don’t think this is necessary,
check out www.netice.com and
examine BlackICE Defender. It
scared the living daylights out of
me to see multiple port scans and
other (relatively innocent) probes
on my machine from the outside. If
one of these visitors has less than
good intentions, then you are
better prepared. A personal
firewall will connect your client
machine, just as a corporate
firewall projects your web server.

Finally, when building a commer-
cial website that depends on a web
server application, you should
always consider the web server
(and everything on it) to be

expendable. No matter how many
precautions you take, hackers will
probably be able to break it. It’s
only a matter of how much it costs
to break in versus how much hack-
ers will gain to break in (don’t
underestimate the sheer value of ‘I
did it’: even non-profit sites are
prone to hacker attacks). In other
words, make sure you have a
backup of your website and the
valuable data is stored safely (and
please consider erasing credit
card numbers right after you’ve
used them, so you don’t risk your
database being ‘visited’).

Proxy
A proxy is a special firewall: one
that can be used to allow certain
users access to another network
resource by supplying usernames
and passwords. Where a firewall
can be used to safeguard an entire
resource, a proxy is often used
especially to open up a resource
for specific users (like internet
access from within a private net-
work, which may only be available
through a proxy). The proxy
ensures nothing can get back, and
people can only get through with
the correct username/password.

Delphi 5 includes support for
proxies with the TWebConnection
component. This component is
used in the client part of the
multi-tier application, where it can
connect to a remote database
(another tier) through an HTTP
proxy. A special ISAPI DLL,
httpsrvr.dll, is used to make the
connection with the database tier,
and must be installed and accessi-
ble by our web server application.
TWebConnection has a Proxy prop-
erty in which we can specify the IP
address (or name) of the proxy
server. We also need to specify the
UserName and Password properties
to get through the proxy and
access the database tier. Note that
the TWebConnection component
itself is not the place where the
username/password are verified,
but only routes the username and
password to the proxy (as speci-
fied in the Proxy property).

Alternatively, we can set the
LoginPrompt property to True, but
this is not advisable when building

20 The Delphi Magazine Issue 55

a web server application (the web
server application would try to
show the login dialog, but it would
be for the ‘default internet user’,
and by default not even displayed
on the web server machine, let
alone in the client browser).

If you don’t use a proxy, then you
can leave the Proxyproperty empty
(as well as the username/password
properties). However, in those
cases, you can also use a regular
TDCOMConnection or TCORBAConnec-
tion component, rather than
connect over ‘plain’ HTTP.

Secure Sockets Layer
Apart from securing your web
server and database servers with
firewalls, you can also make sure
the incoming traffic (and data) is
secured. This is especially impor-
tant with sensitive input from the
web, like customer name and
credit card information. For this
purpose, the SSL (Secure Socket
Layer) protocol has been imple-
mented to encrypt all data trans-
mitted between a client and a
server during the (secure) session.
In a browser, you can notice this by
the ‘lock’ which is closed during a
secure session. SSL uses Secure
HTTP (also called S-HTTP) which
translates into an https:// prefix
instead of http://. In order to be
able to use SSL, you should first
obtain and install public and pri-
vate encryption keys from a source
like VeriSign or Thawte. During the
initial https:// connection, the
public key is sent from the server
to the client, which uses this public
key to encrypt all data. When data
is received by the server, the pri-
vate key is used to decrypt the
data. So, apart from using the
https:// prefix, SSL can be more or
less transparent for web server
application developers using
Delphi. [We’re planning a future
article on Delphi and SSL in a future
issue. Ed]

Password-Protected Pages
Apart from securing your database
on a database server behind a
second firewall, or using SSL for
incoming data protection, it’s
sometimes also useful to have cer-
tain pages of your website avail-
able on a ‘members-only’ basis.
This means you need some kind of
authorisation. Usually, this infor-
mation is not considered critical,
so the simple HTTP authorisation
which is built into the web server
can suffice.

Using this authorisation means
that we need to verify the
username and password, and must
generate an answer in response to
a correct username/password (the
‘members-only’ information) or an
incorrect combination (another
try or an error message). Although
you can set permissions on direc-
tories using IIS, it’s more fun to use
Delphi and dynamically check the
usernames and passwords.

HTTP Headers
As you probably know, a CGI
(Common Gateway Interface)
application is just a console appli-
cation that outputs a dynamic web
page. The output consists of an
HTTP header followed by an empty
line and the actual content. Inside
the HTTP header we specify the
MIME-type of the content (usually
text/html, but it can also be
image/gif, or just about anything
useful you can image), so the
browser knows what to expect.
The web server itself also adds a
special first line to the HTTP
header which in most cases says:
HTTP/1.0 200 OK. This is the line
containing the result code of the
dynamic web page (all is OK, so dis-
play the following content).

Suppose we could eliminate that
first line and replace it by a special
HTTP error code, namely 401
(which means ‘unauthorized’) and
request a user to login first. We
could produce the following HTTP
header to force a user to login in
the realm /DrBob:

HTTP/1.0 401 Unauthorized
content-type: text/html
WWW-Authenticate:
Basic realm="/DrBob"

If we write a simple CGI console
application that writes the above
few lines, we get an empty page as
the result. That’s because the web
server still adds the special first
line (HTTP/1.0 200 OK) to this page,
and the second HTTP status code
line is simply ignored. In order to
tell the web server not to add this
special first line, we must rename
the CGI executable and give it an
NPH- prefix (which stands for Non
Protocol Header). With the NPH-
prefix, the result of a CGI
executable that produces the
above output will be a login dialog,
as can be seen in Figure 1.

You can specify a username and
password here, and click on OK,
which re-executes the CGI applica-
tion again and indeed again pro-
duces the same HTTP/1.0 401
header which results in the above
dialog again. In theory, the dialog
should appear a maximum of three
times before permission is simply
denied. However, in practice I have
not experienced this limit (which
means that, again in theory, one
could keep on trying until a correct
username/password combination
is found).

In order to respond to the autho-
rization information, we need to
take a look at the environment data
sent from the client to the server.
This login username/password
pair is not part of the regular input,
but can be obtained by looking at
the value of either the HTTP_AUTHO-
RIZATION or AUTHORIZATION environ-
ment variable.

For those of you who remember
my DrBobCGI unit, in order to sup-
port HTTP authorization, we need

➤ Figure 1

if (Pos('HTTP_AUTHORIZATION',Str) = 1)
or (Pos('AUTHORIZATION',Str) = 1) then begin
Delete(Str,1,Pos('=',Str));
Authorization := Str;

end;

➤ Listing 1:
Addition to DrBobCGI.

March 2000 The Delphi Magazine 21

to declare a string variable named
Authorization and include the code
in Listing 1 in the initialization
section of the unit (the full source
code is on the companion disk).

Armed with this new version of
the DrBobCGI unit, we can write
standard console CGI applications
that can respond to the HTTP
authorization input. There’s just
one more catch: the Authorization
string contains encrypted data of
the form Basic XXXXXXXX, ie the
6-character prefix ‘Basic ’ (to
indicate we wish to use the basic
authorization scheme) followed by
the Base64-encoded username/
password pair. After we strip the
first six characters from the Autho-
rization string, we can use an
UnBase64 function (see Listing 2) to
decrypt it to obtain the username
and password as input to the
browser’s authorization dialog.

Once we add the new DrBobCGI
and Base64 units to the uses clause
of our standard console CGI appli-
cation, we can invoke and respond
to the authorized input. Invoking
the dialog is easy: just return the
HTTP/1.0 401 headers (and make
sure you’ve renamed the CGI exe-
cutable to have an NPH- prefix).
Responding to the authorization
input is also easy, since we can
now use the global Authorization
variable (defined and assigned in
the DrBobCGI unit). Once we strip
the first six characters from it, we

can use the UnBase64 function to
decode it, resulting in the
username and password.

The login program from Listing 3
gives an example usage. Of course,
in real life, we need to actually
verify the username and password
before the HTTP/1.0 200 OK header
will be generated, together with
the dynamic ‘members only’ web
page content. The example in List-
ing 3 simply presents and decodes
the given HTTP authorization
input. Which also shows that it’s
easy for a packet-sniffer to ‘de-
code’ this data as well, never trust
critical or truly sensitive data to be
safe in this way. And you will prob-
ably want to ensure the members-
only information is stored in
encrypted files on the web server.

The output from the sample
login application (renamed as

NPH-TDM55.EXE) can be seen in
Figure 2. Note the username bswart
and password drbob42 with a colon
in between them.

In theory, for an even more
secure way to handle a ‘members-
only’ part of your website, you
could consider combining SSL and
HTTP authorization. This means
you need to obtain an SSL key to
enable the use of https:// on your
website (so data will be sent
encrypted) and even then you can
protect individual dynamic pages
with a username and password
scheme using HTTP authorization.
And remember that a combined
encryption technique is stronger
than the individual encryption
techniques alone (assuming the
authorization HTTP header gets
encrypted as well, which I could
not verify for certain at this time).

unit Base64;
interface
function UnBase64(Str: String): String;
implementation
function UnBase64(Str: String): String;
type
TTriplet = Array[0..2] of Byte;
TKwartet = Array[0..3] of Byte;

var
Kwartet: TKwartet;
Triplet: TTripLet;
procedure Kwartet2Triplet(
Kwartet: TKwartet; var Triplet: TTriplet);

var i: Integer;
begin
for i:=0 to 3 do begin
case Chr(Kwartet[i]) of
'A'..'Z': Kwartet[i] :=

0 + Kwartet[i] - Ord('A') + 32;
'a'..'z': Kwartet[i] :=

26 + Kwartet[i] - Ord('a') + 32;
'0'..'9': Kwartet[i] :=

52 + Kwartet[i] - Ord('0') + 32;
'+': Kwartet[i] := 62 + 32;

else
Kwartet[i] := 63 + 32

end
end;

Triplet[0] := ((Kwartet[0] - 32) SHL 2) +
(((Kwartet[1] - 32) AND $30) SHR 4);

Triplet[1] := (((Kwartet[1] - 32) AND $0F) SHL 4) +
(((Kwartet[2] - 32) AND $3C) SHR 2);

Triplet[2] := (((Kwartet[2] - 32) AND $03) SHL 6) +
((Kwartet[3] - 32) AND $3F)

end {Kwartet2Triplet};
var i: Integer;
begin
Result := '';
while Length(Str) > 4 do begin
for i:=1 to 4 do
Kwartet[Pred(i)] := Ord(Str[i]);

Delete(Str,1,4);
Kwartet2Triplet(Kwartet,Triplet);
for i:=0 to 2 do
Result := Result + Chr(Triplet[i]);

end;
for i:=1 to 4 do
if i <= Length(Str) then
Kwartet[Pred(i)] := Ord(Str[i])

else
Kwartet[Pred(i)] := Ord('/');

Kwartet2Triplet(Kwartet,Triplet);
for i:=0 to 2 do
Result := Result + Chr(Triplet[i])

end {Unbase64};
end.

➤ Listing 2: Base64 unit
for base64-decryption. program login;

{$APPTYPE CONSOLE}
uses DrBobCGI, Base64;
begin
if (Authorization = '') then begin
writeln('HTTP/1.0 401 Unauthorized');
writeln('content-type: text/html');
writeln('WWW-Authenticate: Basic realm="/DrBob"')

end else begin
writeln('HTTP/1.0 200 OK');
writeln('content-type: text/html');
writeln;
writeln('<HTML>');
writeln('<BODY>');
writeln('['+Authorization+']');
if Pos('Basic ',Authorization) = 1 then
Delete(Authorization,1,6);

writeln('<P>');
writeln('['+Authorization+']');
writeln('<P>');
writeln('['+UnBase64(Authorization)+']');
writeln('</BODY>');
writeln('</HTML>')

end
end.

➤ Listing 3: Standard CGI Authorization example.

24 The Delphi Magazine Issue 55

WebBroker Approach
It’s nice to know how to invoke and
listen to HTTP authorization from a
standard console CGI application,
but what about WebBroker and
InternetExpress? Well, both are
based on WebModules, and inside
the OnAction event handler for
WebActionItems we can use the
Request argument (type TWeb-
Request) which has an Authoriza-
tion property holding the base64-
encoded HTTP authorization infor-
mation (just like the global variable
Authorization that I defined in the
DrBobCGI unit).

Specifying custom HTTP head-
ers also works the same way: just
rename the CGI executable so it
has the NPH- prefix, and you can
return any HTTP response header
using the Response.StatusCode
property. The authorization type
can be specified in the WWWAuthen-
ticateproperty (I’ve only explored
the Basic type), and the Realm can
be set with the Realm property of
the Response argument.

Once I’ve finished generating the
combined custom headers, I
always call the Response.Send-
Response method, to avoid delays
and directly send the HTTP head-
ers to the client browser.

Note that the code in Listing 4
allows any ‘bswart’ to enter, either
as part of the username or pass-
word. Not very practical, but just
an example to show how you can
obtain and decode the Response.
Authorization information inside a
WebBroker or InternetExpress
application.

ActiveX Security
As most of you should know by
now (especially if you’ve read my

articles over the years): ActiveX
controls and ActiveForms are also
a potential security risk. Not for
server databases and applications,
but for clients. An ActiveX control,
like an ActiveForm, is not
restricted to the browser window.
It’s just another 32-bit application
running on your machine: just like
your other applications, with the
same permissions on your
machine (and on your network and
on the internet). As a result, an
ActiveForm can do virtually any-
thing behind the scenes. Even if it
looks like nothing is happening, it
can overwrite your registry or
send your credit card number and
other sensitive information to the
ActiveX’s author.

To decrease this security threat,
ActiveX controls can be code
signed, for example by a company
like VeriSign (the same company
where you can obtain an SSL certif-
icate). However, code signing only
indicates that you can indeed back-
track to the author, ie that you can
somehow truly identify the author
of the ActiveX. There’s nobody
who claims that code signing will
make the ActiveX control indeed
safe.

As an example, Fred McClain
once wrote an ActiveX control
called Exploder, which demon-
strates security problems with
Microsoft’s Internet Explorer.
Exploder performs a clean shut-
down of Windows 95 and turns off
the power on machines which
have a power conservation BIOS.
For more information, visit www.
halcyon.com/mclain/ActiveX/wel-
come.html (this URL won’t shut
down your machine, it contains
the information and a link to the
Exploder ActiveX control itself).

Exploder was even code signed
for a while (before Fred was ‘asked’
by VeriSign and Microsoft to
remove it). But although removed,
it emphasises that users should
never blindly accept code signed
ActiveX controls from the internet
(and certainly not ActiveX con-
trols that are not code signed, of
course).

Next Time
After all these security issues, it’s
time to take it easy and relax.

So next time we’ll return to the
topic of VisiBroker CORBA excep-
tions (left uncovered in the last
issue) and see just what it means
for existing and new CORBA appli-
cations written in Delphi 5
Enterprise.

So stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for TAS Advanced
Technologies, and a freelance
technical author.

procedure TWebModule1.WebModule1WebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var Auth: String;
begin
Auth := Request.Authorization;
if Pos('Basic ',Auth) = 1 then
Delete(Auth,1,6);

Auth := UnBase64(Auth);
if Pos('bswart',Auth) = 0 then begin { any "bswart" may enter }
Response.StatusCode := 401;
Response.WWWAuthenticate := 'Basic';
Response.Realm := '/DrBob';
Response.SendResponse;

end else begin
Response.Content := 'Welcome: ['+Request.Authorization+']=['+Auth+'])'

end
end;

➤ Figure 2

➤ Listing 4: WebBroker Authorization example.

	Security Levels
	Firewall
	Proxy
	Secure Sockets Layer
	Password-Protected Pages
	HTTP Headers
	WebBroker Approach
	ActiveX Security
	Next Time

